Indexing Large Text Collections Using the Vector Space Model

Kevin C. O'Kane, Ph.D.
Computer Science Professor Emeritus
University of Northern Iowa
http://www.cs.uni.edu/~okane
kc.okane@gmail.com

Additional Resources

```
Information Retrieval, C. J. van RIJSBERGEN
   http://www.dcs.gla.ac.uk/Keith/Preface.html

Introduction to Information Retrieval, C. D. Manning, P.
   Raghavan and H. Schütze

   http://nlp.stanford.edu/IR-book/information-retrieval-book.html

Modern Information Retrieval, R. Baeza-Yates and B. Ribeiro-Neto

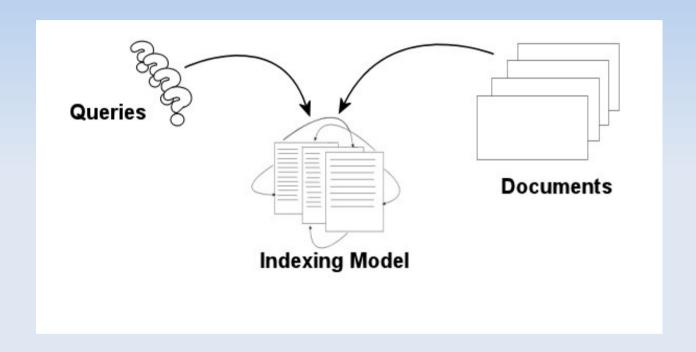
  http://www.sims.berkeley.edu/~hearst/irbook
```

Someone, Somewhere Is Searching for It

What is Information Retrieval?

Information retrieval is the art of identifying similarities between queries and collections of objects in a database. In nearly all cases, the objects found will not be identical to the query but will only resemble it in some fashion.

Basic concept

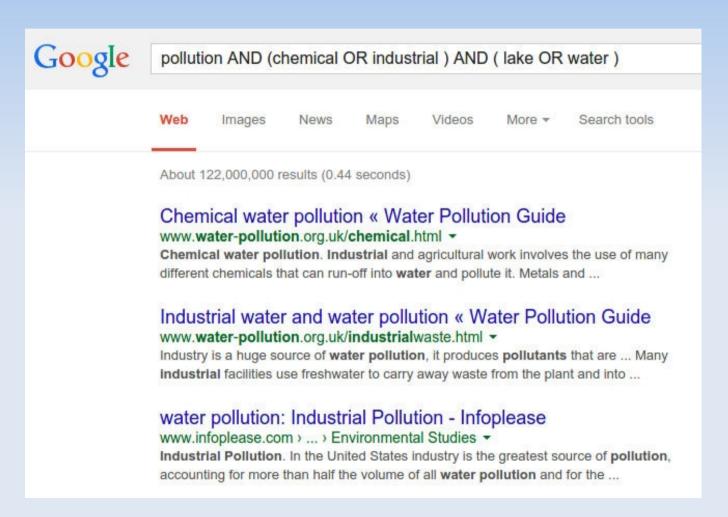


In its simplest form, an information retrieval system maps objects and queries into a data model which makes it possible to to calculate the similarity between queries and the objects.

1979 Tymnet Search

```
1oct79 15:06:53 User5316
  $0.15 0.006 Hrs File1*
  $0.05 Tymnet
  $0.20 Estimated Total Cost
File1*: ERIC 66-79/MAR
         Set Items Description (+=OR; *=AND; -=NOT)
                                                         FILE Number
  16
         1oct79 15:07:09 User5316
  $0.15 0.006 Hrs File1* ___
                                                       TIME
  $0.05 Tymnet
  $0.20 Estimated Total Cost
File6: NTIS 64-79 15520 _
                                                    COVERALIE 1964-1979
(Copr. NTIS)
         Set Items Description (+=OR; *=AND; -=NOT)
    BTEPS (POLLUTION) AND (CHEMICAL OR INDUSTRIAL) AND (LAKE? OR WATER?)
          1 31174 POLLUTION
           2 37195 CHEMICAL
                                                       SEARCH
           3 18963 INDUSTRIAL
           4 2549 LAKE?
           5 58840 WATER?
           5 5174 (1) AND (2 OR 3) AND (4 OR 5)
? S STEPS CONTROL OR SEWAGE(W) TREATMENT OR SEDIMENT?
           7 61295 CONTROL
          8 3097 SEWAGE(W) TREATMENT
          9 6021 SEDIMENT?
          10 68790 7 OR 8 OR 9
? C 1*6
         11 5174 1*6
                                                                        3DX
        _12 1270 1#9
END/SAVE
 erial#3DX9
      Toct79 15:11:13 User5316
  $2.42 0.069 Hrs File6 9 Descriptors
  $0.55 Tymnet
  $2.97 Estimated Total Cost
? LOGOFFHOLD
        1oct79 15:11:39 User5316
  $0.32 0.009 Hrs File6
 $0.07 Tymnet
 $0.39 Estimated Total Cost
                                         Before the Internet
LOGOFF 15:11:45
tc> dropped by host system
please los in:
```

Google Search 2015



http://google.about.com/od/searchingtheweb/qt/booleantip.htm

Specialized Searching

Other forms of text searching

>gi | 2695846 | emb | Y13255.1 | ABY13255 Acipenser baeri mRNA for immunoglobulin heavy chain, TGGTTACAACACTTTCTTCTTTCAATAACCACAATACTGCAGTACAATGGGGATTTTAACAGCTCTCTGTATAATAATGA CAGCTCTATCAAGTGTCCGGTCTGATGTGTTGACTGAGTCCGGACCAGCAGTTATAAAGCCTGGAGAGTCCCATAAA CTGTCCTGTAAAGCCTCTGGATTCACATTCAGCAGCGCCTACATGAGCTGGGTTCGACAAGCTCCTGGAAAGGGTCTGGA ATGGGTGGCTTATATTTACTCAGGTGGTAGTAGTACATACTATGCCCAGTCTGTCCAGGGAAGATTCGCCATCTCCAGAG ACGATTCCAACAGCATGCTGTATTTACAAATGAACAGCCTGAAGACTGAAGACACTGCCGTGTATTACTGTGCTCGGGGC GGGCTGGGGTGGTCCCTTGACTACTGGGGGAAAAGGCACAATGATCACCGTAACTTCTGCTACGCCATCACCACCGACAGT GTTTCCGCTTATGGAGTCATGTTGTTTGAGCGATATCTCGGGTCCTGTTGCTACGGGCTGCTTAGCAACCGGATTCTGCC TACCCCCGCGACCTTCTCGTGGACTGATCAATCTGGAAAAGCTTTT

If you submit the above to NCBI BLAST (National Center for Biotechnology Information), it will conduct a search of the **nr** database of nucleotide sequences. The result is a ranked list of sequences from the data base based on their similarity to the query sequence. Sequences found whose similarity score exceeds a threshold are displayed.

Example BLAST Search Result

```
>qb|U17058.1|LOU17058 Lepisosteus osseus Iq heavy chain V region mRNA, partial
Score = 151 bits (76), Expect = 4e-33
 Identities = 133/152 (87%), Gaps = 0/152 (0%)
 Strand=Plus/Plus
Query
      242
            TGGGTGGCTTATATTTACTCAGGTGGTAGTAGTACATACTATGCCCAGTCTGTCCAGGGA
                                                                          301
Sbjct
            TGGGTGGCGTATATTTACACCGATGGGAGCAATACATACTATTCCCAGTCTGTCCAGGGA
                                                                          63
Ouerv
       302
           AGATTCGCCATCTCCAGAGACGATTCCAACAGCATGCTGTATTTACAAATGAACAGCCTG
                                                                          361
Sbjct
       64
           AGATTCACCATCTCCAGAGACAATTCCAAGAATCAGCTGTACTTACAGATGAGCAGCCTG
                                                                          123
Query
       362
           AAGACTGAAGACACTGCCGTGTATTACTGTGC
                                              393
                                                      Bars indicate exact
                                                      matches.
Sbjct
     124
                                              155
           AAGACTGAAGACACTGCTGTGTATTACTGTGC
```

Zipf's Law

Zipf's Law states that the frequency ordered rank of a term in a document collection times its frequency of occurrence is approximately equal to a constant:

Frequency * Rank ~= constant

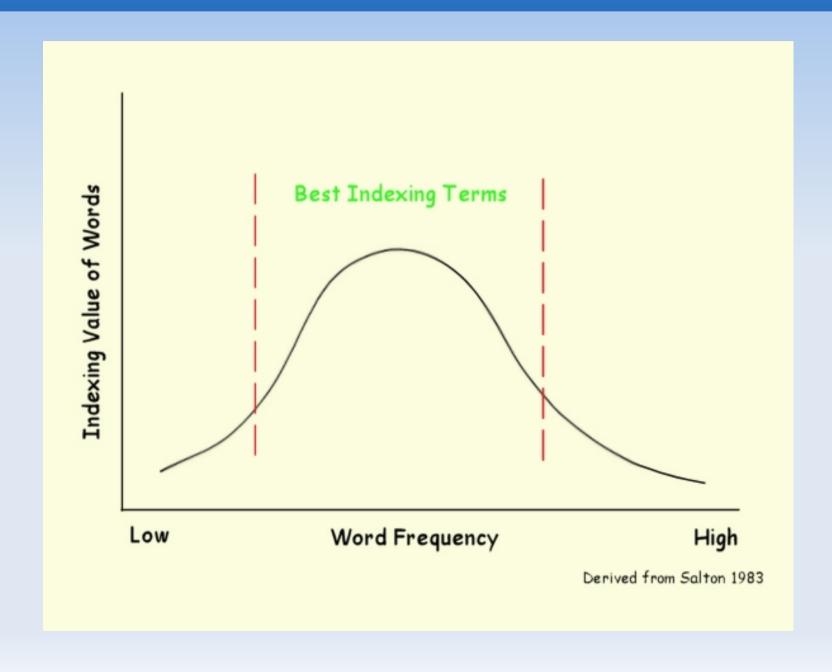
Frequency is the total number of times some term k occurs.

Rank is the position number of the term when the terms have been sorted by Frequency. The most frequently occurring term is rank 1, the second most frequently occurring term is rank 2 and so forth. Program calculates Zipf's constants.

Zipf's Constants for OHSUMED Database

369 of	381 treatment	385 who	439 normal	481 liver
425 in	393 been	391 this	435 infection	484 [news]
613 the	403 during	383 coronary	437 function	486 can
733 and	414 comment	389 used	442 which	490 effect
502 a	426 has	393 new	441 studies	493 bone
555 with	423 comments	398 protein	444 this	497 type
561 to	436 see	403 using	447 treated	497 its
514 the	428 or	403 use	448 not	494 had
529 for	437 effects	405 two	450 cases	
426 patients	428 in	411 syndrome	454 immunodeficiency	
429 on	425 disease	417 therapy	458 heart	
462 by	416 clinical	422 report	460 myocardial	
498 is	399 blood	426 virus	463 cardiac	
432 letter	408 at	430 growth	465 acid	
417 was	410 cells	434 children	469 primary	
407 from	408 effect	439 role	473 following	
425 were	417 acute	433 determine	472 diagnosis	
437 an	423 to	433 rat	472 receptor	
414 human	408 associated	422 editorial	475 analysis	
365 study	397 be	420 pulmonary	476 management	
379 we	400 case	423 cancer	476 gene	
396 that	400 studied	425 artery	479 carcinoma	
393 after	396 between	426 an	479 may	
386 as	394 renal	430 ventricular	478 we	
394 are	389 chronic	435 disease	482 care	
396 have	383 factor	437 response	484 patients	
370 cell	380 patient	439 activity		

Good Indexing Terms



IS&R Data Preliminaries

Initial processing of the data:

- Convert the data into a more easily managed format
- Remove stop words
- Remove very high and very low frequency words
- Reduce words to stems
- Construct document vectors
- Construct term vectors
- Construct document frequency vector (number of docs each term used in)
- Construct dictionary vector (number of times each word occurs)

OHSUMED TREC Text Collection

The OHSUMED test collection is a set of abstracts from MEDLINE, the on-line medical information database, consisting of titles and/or abstracts from 270 medical journals over a five-year period (1987-1991). Total number of abstracts: 293,857

Total vocabulary: ~120,000 unique words (after stemming, rejection of words less than three or longer than 25 characters in length, and words beginning with numbers)

A small number of words have very high frequencies of occurrence compared to the remainder of the file.

At the low end of the frequency spectrum, there are about 72,000 words that occur 5 or fewer times (60% of the total number of words).

If we eliminate words with total frequency of occurrence of 5 or less or greater than 40,000 (the top ranking 101 words), this results in a candidate vocabulary of about 64,000 words.

Medline Format

```
STAT- MEDLINE
      Acetaldehyde/*ME
MH
      Buffers
MH
      Catalysis
MН
      HEPES/PD
MH
MH
      Nuclear Magnetic Resonance
      Phosphates/*PD
MH
MН
      Protein Binding
      Ribonuclease, Pancreatic/AI/*ME
MH
      Support, U.S. Gov't, Non-P.H.S.
MH
      Support, U.S. Gov't, P.H.S.
MH
      The binding of acetaldehyde to the active site of ribonuclease: alterations in catalytic ...
TI
      Ribonuclease A was reacted with [1-13C,1,2-14C]acetaldehyde
AB
      and sodium cyanoborohydride in the presence or absence
      of 0.2 M phosphate. After several hours of incubation
      at 4 degrees C (pH 7.4) stable acetaldehyde-RNase adducts
      were formed, and the extent of their formation was
      similar regardless of the presence of phosphate. Although
      the total amount of covalent binding was comparable
      in the absence or presence of phosphate, this active
      site ligand prevented the inhibition of enzymatic activity
      seen in its absence. This protective action of phosphate
      diminished with progressive ethylation of RNase, indicating
      that the reversible association of phosphate with the
      active site lysyl residue was overcome by the irreversible
```

Modified Text (1 line)

148710 130 chromaticity and achromaticity. evidence for a functional differentiation in visual field defects. In the visual field defects of 10 patients who had suffered lesions in the postgeniculate part of the primary visual projection, red-green discrimination and achromatic target detection was tested. in addition, 8 of these patients were tested for detection of red and green targets. targets were presented on a low photopic achromatic background, so that the red and green targets differed from the background both in intensity and in wavelength, whereas the achromatic target differed in intensity only. six patients showed evidence of discriminating between red and green targets, 5 patients could also detect the colour targets, but none could detect the achromatic one that was presented at the same retinal position. these results imply that wavelength and intensity information are treated differentially, and suggest that these patients possess residual colour-opponent channels that subserve the defective part of the visual field.

Stop List Words

```
eight
  either
  eleven
   else
elsewhere
  empty
  enough
   etc
   even
   ever
  every
 everyone
everything
everywhere
  except
   few
 fifteen
  fifty
   fill
   find
   fire
  first
   five
   for
```

Filtered OSUMED (no stop words)

7128 6 clonidine alcohol withdrawal pilot study differential symptom responses following iv clonidine The effects iv bolus clonidine 15 mgkg withdrawal symptoms studied 7 male alcoholics compared 7 normal controls clonidine reduced subjective objective measures withdrawal reached significance scores depression muscle tension comparison controls alcoholics withdrawal showed reduced sedative effects clonidine

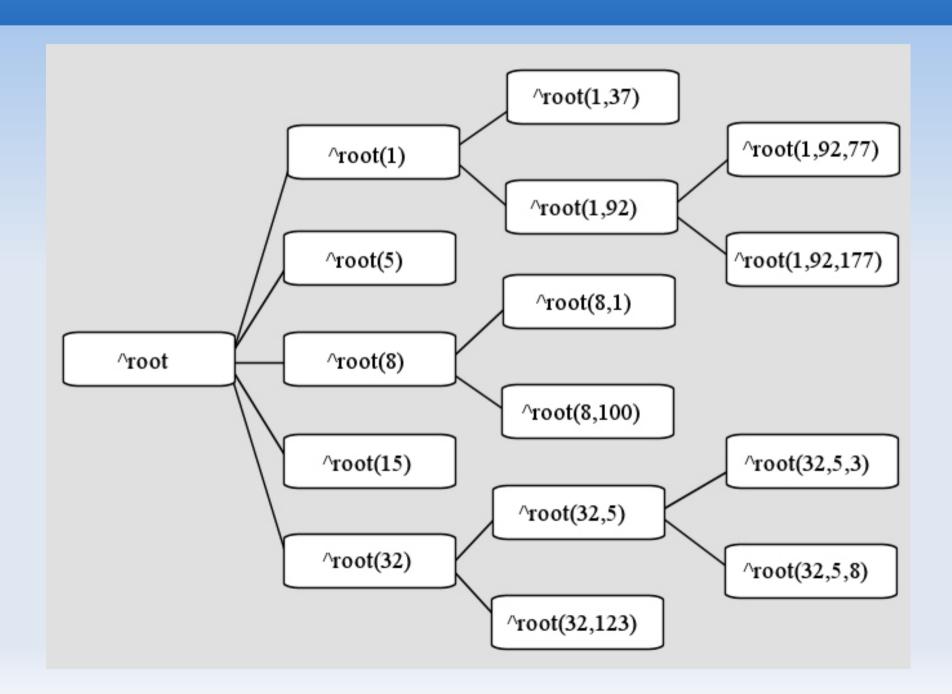
Word Stems

```
{ "nned", 4, "n", 1, fin,},
{ "rated", 5, "rate", 4, fin,},
                                /* sophisticated */
{ "cated", 5, "cate", 4, fin, },
{ "iated", 5, "iate", 4, fin,},
                                /* associated */
                                /* animated automated */
{ "mated", 5, "mate", 4, fin,},
{ "gated", 5, "gate", 4, fin, },
                                /* aggregated */
                                /* accumulated */
{ "lated", 5, "late", 4, fin, },
{ "bated", 5, "bate", 4, fin,}, /* debated */
{ "nated", 5, "nate", 4, fin, },
                                 /* dominated donated */
{ "ated", 4, "te", 2, fin,},
                                /* automated */
{ "eted", 4, "ete", 3, fin,}, /* competed deleted */
{ "ated", 4, "ate", 3, fin,},
                                /* alternated */
{ "kted", 4, "kt", 2, fin,}, /* marketed */
{ "oted", 4, "ote", 3, fin,}, /* promoted */
{ "uted", 4, "ute", 3, fin,},
                                /* distributed */
{ "sted", 4, "ste", 3, fin,}, /* wasted */
```

Stemmed Text

7128 6 clonidine alcohol withdraw pilot study differential symptom respons follow clonidine the effect bolu clonidine mgkg withdraw symptom study male alcoholic compare norm control clonidine reduce subject objective measure withdraw reach significance score depress muscle tension comparison control alcoholic withdraw show reduce sedative effect clonidine

Mumps Global Arrays



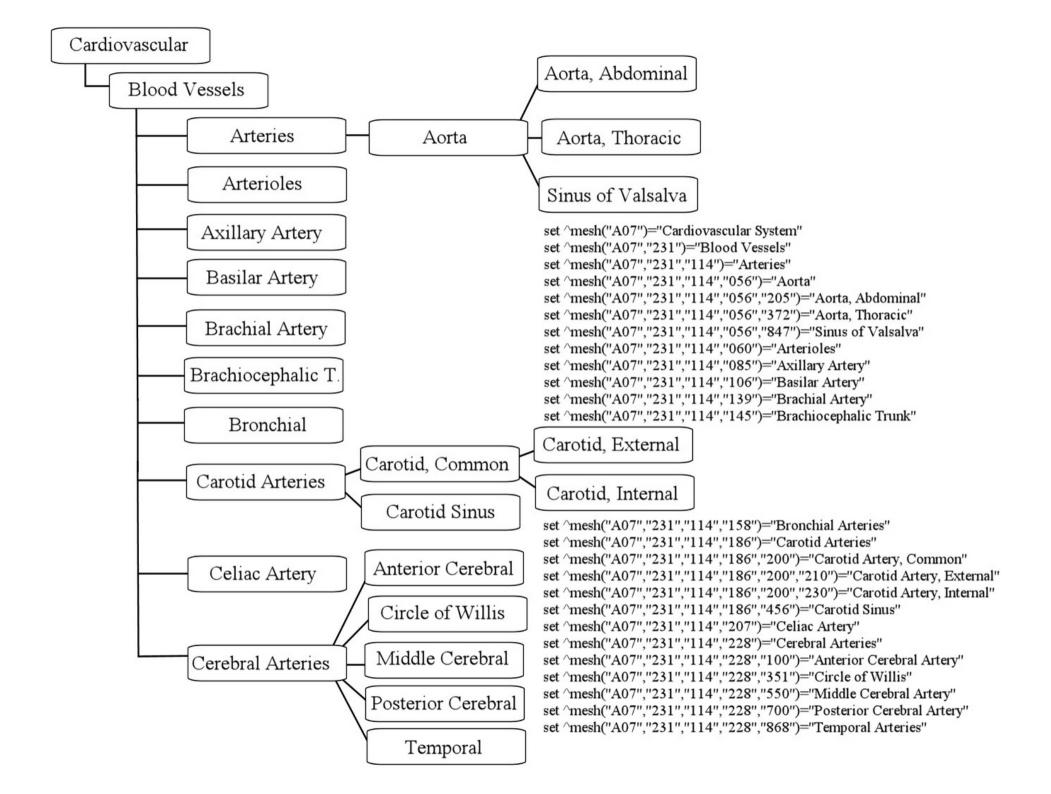
Creating Global Arrays

```
set ^root(1,37)=1
set ^root(1,92,77)=2
set ^root(1,92,177)=3
set ^root(5)=4
set ^root(8,1)=5
set ^root(8,100)=6
set ^root(15)=7
set ^root(32,5)=8
set ^root(32,5,3)=9
set ^root(32,5,8)=10
set ^root(32,123)=11
```

String Indices

```
set ^lab(1234,"hct","05/10/2008",38)=""
set ^lab(1234,"hct","05/12/2008",42)=""
set ^lab(1234,"hct","05/15/2008",35)=""
set ^lab(1234,"hct","05/19/2008",41)=""
```

Note: sometimes the indices themselves are the data and nothing ("") is actually stored at the node. That is the case here where the last index is the test result.



Basic Matrices & Vectors

The *document-term matrix* 'doc(docNbr,word) giving the number of times the term word occurs in document *docNbr*.

A term-document matrix <u>^index(word,DocNbr)</u>.

A dictionary vector 'dict(word) giving the number of times term word occurs in the total collection.

A *document frequency vector* ^*df(word)* giving the number of documents term word occurs in the collection.

Document Vectors

	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10
Doc 1	5	0	3	0	1	0	2	1	0	0

Document Vectors

```
^doc(101,"cystic")=11.02
^doc(101,"cystic-hygroma")=2.197225
^doc(101,"cystic-sclerosing")=1.609438
^doc(101,"favouare")=6.9
^doc(101,"fever")=5.1
^doc(101,"fever-inflammatory")=1.791759
^doc(101,"hygroma")=13.8
^doc(101,"hygroma-sclerosing")=1.791759
^doc(101,"inflammatory")=8.66
^doc(101,"intracystic")=13.8
^doc(101,"last")=4.06
^doc(101,"lead")=4.26
^doc(101,"ok")=13.8
^doc(101,"origin")=4.26
^doc(101,"overy")=5.51
^doc(101,"pyogene")=6.9
^doc(101,"regress")=8.82
^doc(101,"scar")=5.51
^doc(101,"sclerose")=11.6
^doc(101,"side-effect")=6.2
^doc(101,"streptococcus")=5.8
```

Term Vectors

	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Doc 6	Doc 7	Doc 8	Doc 9	Doc 10
Word1	1	0	2	0	0	1	3	0	0	1

Term Vectors

```
^index("inflammatory",101)=8.66
    ^index("inflammatory",308)=12.99
    ^index("inflammatory",309)=4.33
    ^index("inflammatory",430)=4.33
    ^index("inflammatory",44)=8.66
    ^index("inflammatory",555)=4.33
    ^index("inflammatory",564)=4.33
    ^index("inflammatory",72)=4.33
    ^index("inflammatory",881)=4.33
    ^index("inflammatory",890)=4.33
    ^index("inflammatory",976)=8.66
    ^index("inflammatory",981)=4.33
```

Document Frequency Vector

```
^df("achlorhydric")=1
^df("achromatic")=1
^df("achromatic-green")=7
^df("achromatic-intensities")=7
^df("achromatic-target")=19
^df("achromatic-wavelength")=5
^df("achromaticity")=1
^df("acid")=50
^df("acid-base")=1
^df("acid-base-hypertensive")=6
^df("acid-base-spontaneously")=7
^df("acid-base-young")=7
^df("acid-cholesterol")=1
^df("acid-contain")=1
^df("acid-independent")=1
^df("acid-independent-bile")=7
^df("acid-like")=1
^df("acid-like-gamma-aminobutyric")=5
^df("acid-lod")=1
^df("acid-urea-hexadecyltrimethylammonium")=1
```

Dictionary Vector

```
^dict("achlorhydric")=1
^dict("achromatic")=4
^dict("achromatic-green")=7
^dict("achromatic-intensities")=7
^dict("achromatic-target")=19
^dict("achromatic-wavelength")=5
^dict("achromaticity")=1
^dict("acid-base")=3
^dict("acid-base-hypertensive")=6
^dict("acid-base-spontaneously")=7
^dict("acid-base-young")=7
^dict("acid-cholesterol")=1
^dict("acid-contain")=1
^dict("acid-independent")=1
^dict("acid-independent-bile")=7
^dict("acid-like")=1
^dict("acid-like-gamma-aminobutyric")=5
^dict("acid-lod")=1
^dict("acid-urea-hexadecyltrimethylammonium")=1
```

Vector Space Model

The vector space model views computer generated document vectors as describing a hyperspace in which the number of dimensions (axes) is equal to the number of indexing terms. This approach was originally proposed by G. Salton:

Salton, G.; McGill, M.J., *Introduction to Modern Information Retrieval*, New York: McGraw Hill; 1983.

Salton, G., The state of retrieval system evaluation, *Information Processing & Management*, 28(4): 441-449; 1992.

Videos of a conference on Salton's work and on SMART are available at:

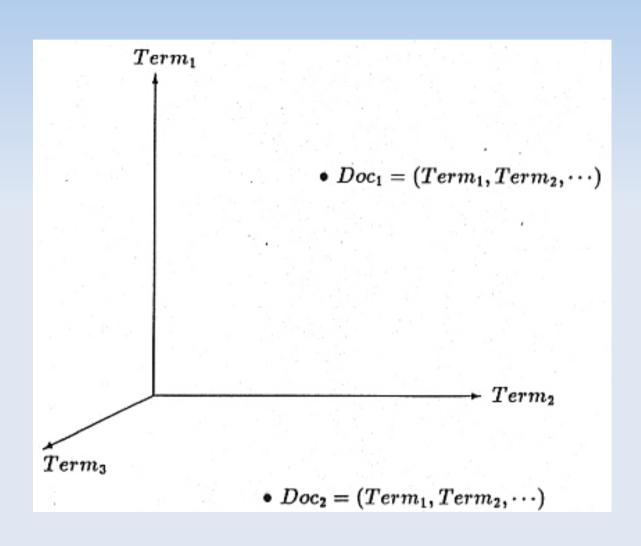
http://www.open-video.org/details.php?videoid=7053

Vector Space Model

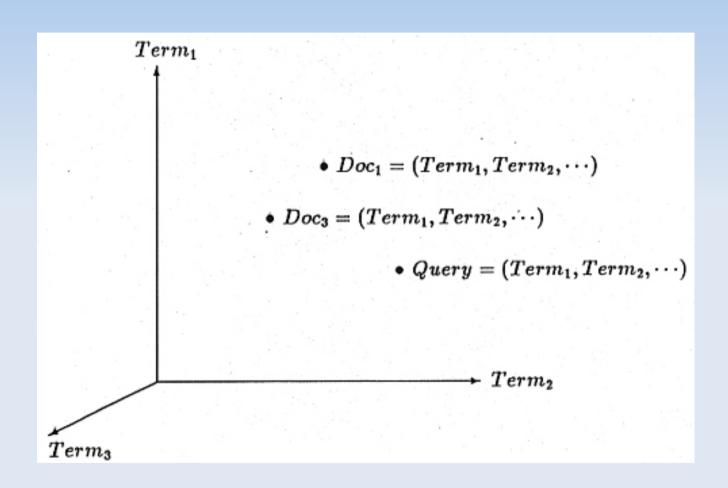
Each document vector describes a point in a space defined by the distance along the axis associated with each document term proportional to the term's importance or significance in the document being represented.

Queries are also portrayed as vectors that define points in the document hyperspace. Documents whose points in the hyperspace lie within an adjustable envelope of distance from the query vector point are retrieved.

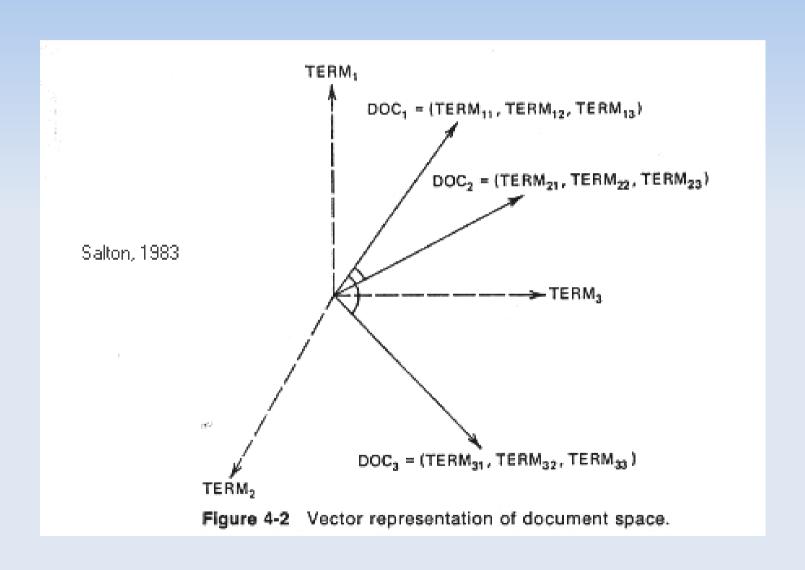
Document Hyperspace



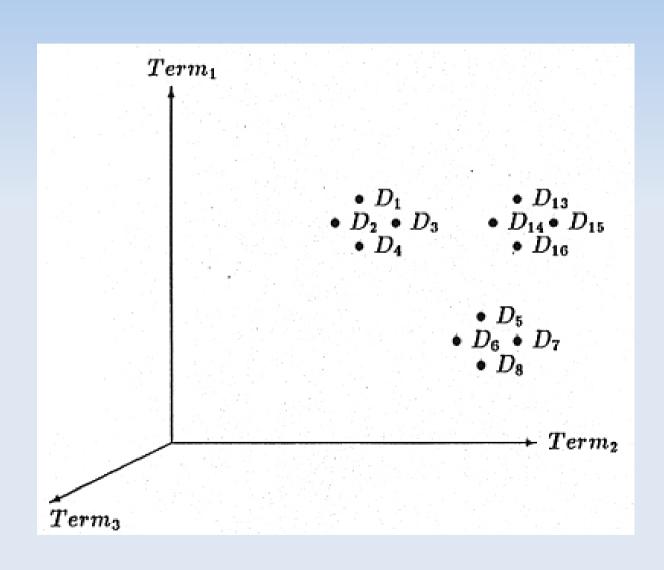
Query and document vectors



Salton's Cosine Representation



Document Clustering



Some Similarity functions

$$\begin{aligned} \operatorname{Sim}_{1}(Doc_{i}, Doc_{j}) &= \frac{2 \left[\sum_{k=1}^{t} \left(\operatorname{Term}_{ik} \cdot \operatorname{Term}_{jk} \right) \right]}{\sum_{k=1}^{t} \operatorname{Term}_{ik} + \sum_{k=1}^{t} \operatorname{Term}_{jk}} \\ \operatorname{Sim}_{2}(Doc_{i}, Doc_{j}) &= \frac{\sum_{k=1}^{t} \operatorname{Term}_{ik} \cdot \operatorname{Term}_{jk}}{\sum_{k=1}^{t} \operatorname{Term}_{ik} + \sum_{k=1}^{t} \operatorname{Term}_{jk} - \sum_{k=1}^{t} \left(\operatorname{Term}_{ik} \cdot \operatorname{Term}_{jk} \right)} \\ \operatorname{Sim}_{3}(Doc_{i}, Doc_{j}) &= \frac{\sum_{k=1}^{t} \left(\operatorname{Term}_{ik} \cdot \operatorname{Term}_{jk} \right)}{\sqrt{\sum_{k=1}^{t} \left(\operatorname{Term}_{ik} \right)^{2} \cdot \sum_{k=1}^{t} \left(\operatorname{Term}_{jk} \right)^{2}}} \end{aligned}$$

Similarity functions

$$\begin{aligned} \operatorname{Sim}_{4}(Doc_{i}, Doc_{j}) &= \frac{\sum_{k=1}^{t} (\operatorname{Term}_{ik} \cdot \operatorname{Term}_{jk})}{\min(\sum_{k=1}^{t} \operatorname{Term}_{ik}, \sum_{k=1}^{t} \operatorname{Term}_{jk})} \\ \operatorname{Sim}_{5}(Doc_{i}, Doc_{j}) &= \frac{\sum_{k=1}^{t} \min(\operatorname{Term}_{ik}, \operatorname{Term}_{jk})}{\sum_{k=1}^{t} \operatorname{Term}_{ik}} \end{aligned}$$

Similarity Examples

```
Doc<sub>i</sub> = (3,2,1,0,0,0,1,1)

Doc<sub>j</sub> = (1,1,1,0,0,1,0,0)

Sim_1(Doc_i,Doc_j) = (2*6)/(8+4) \rightarrow 1

Sim_2(Doc_i,Doc_j) = (6)/(8+4-6) \rightarrow 1

Sim_3(Doc_i,Doc_j) = (6)/SQRT(16*4) \rightarrow 0.75

Sim_4(Doc_i,Doc_j) = 6/4 \rightarrow 1.5

Sim_5(Doc_i,Doc_j) = 3/8 \rightarrow 0.375
```

Example similarity coefficient calculations

Calculating Word Weights

Words used for indexing vary in their ability to indicate content and, thus, their importance as indexing terms.

Some words, such as *the*, *and*, *was* and so forth are worthless as content indicators and we eliminate them from consideration immediately.

Other words occur so infrequently that they are also unlikely to be useful as indexing terms.

Some words, however, with middle frequency of occurrence, are the best candidates as indexing terms.

The goal is to find a metric of the ability of a word to convey information.

Possible Word Weights

```
1000 documents; 29942 word instances, 563 distinct words
^doc(i,w)
                    Number times word w used in document i
^dict(w)
                   Number times word w used in total collection
^df(w)
                   Number of documents word w appears in
Wat1
                    ^doc(i,w)/(^dict(w)/^df(w))
Wqt2
                    ^doc(i,w)*$zlog(NbrDocs/^df(w))+1
Wqt3
                   Wqt1*Wqt2+0.5\1
Word
                        ^doc(i,w) ^dict(w) ^df(w)
                                                      Wqt1
                                                                          Wat3
                                                                                     MCA
                                                                  Wqt2
[1]
       Death of a cult. (Apple Computer needs to alter its strategy) (column)
apple
                                       261
                                                     1.716
                                                                  9.757 17
                                             112
                                                                                  -1.1625
                                                                                -19.4405
                                                     2.028
                                                                  5.109 10
computer
                              4
                                       706
                                             358
                                                     0.973
                                                                  6.290
                                       146
                                             71
                                                                          6
                                                                                 -0.0256
mac
                                                     2.038
                                                                  9.940
                                                                                 -0.5855
macintosh
                                       210
                                             107
                                                                         20
strategy
                                       79
                                              67
                                                     1.696
                                                                  6.406
                                                                        11
                                                                                 -0.0592
[2]
       Next year in Xanadu. (Ted Nelson's hypertext implementations) Swaine, Michael.
document
                              3
                                       114
                                              68
                                                     1.789
                                                                  9.065
                                                                        16
                                                                                   0.0054
                              3
                                       269
                                                     2.052
                                                                  6.078 12
                                             184
                                                                                  -2.1852
operate
[3]
       WordPerfect. (WordPerfect for the Macintosh 2.0) (evaluation) Taub, Eric.
                                                     1.387
edit
                              2
                                       111
                                              77
                                                                  6.128
                                                                          8
                                                                                  -0.0961
frame
                              2
                                         9
                                               7
                                                     1.556
                                                                 10.924 17
                                                                                   0.0131
                              2
                                                     1.310
                                                                                   0.0998
import
                                       29
                                              19
                                                                  8.927
                                                                        12
                                                     1.529
macintosh
                              3
                                       210
                                             107
                                                                  7.705 12
                                                                                  -0.5855
                              3
                                                     1.895
                                       38
                                                                 12.189
                                                                         23
                                                                                   0.1075
                                              24
macro
                                                     0.900
outstand
                              1
                                       10
                                               9
                                                                  5.711
                                                                                   0.0168
                                                     2.021
                                                                  4.330
                                                                                -26.8094
                                       861
                                             435
                                                                          9
user
wordperfect
                                        24
                                               8
                                                     2.667
                                                                                    0.1747
                                                                 39.627 106
```

Inverse Document Frequency Weight

One of the simplest word weighting schemes to implement is the *Inverse Document Frequency* weight. The IDF weight is the measure of how widely distributed a term is in a collection.

Low IDF weights mean that the term is widely used while high weights indicate that the usage is more concentrated.

The IDF weight measures the weight of a term in the collection as a whole, rather than the weight of a term in a document.

Inverse Document Frequency Weight

The IDF weight for a term is it's weight in the *collection as a whole*.

In individual document vectors, the normalized frequency of occurrence of each term is multiplied by the IDF to give a weight for the term *in the particular document*.

Thus, a term with a high frequency but a low IDF weight could still be a highly weighted term in a particular document

On the other hand, a term with a low frequency but a high IDF weight could also be an important term in a given document.

Inverse Document Frequency Weight

$$\log_2(\frac{N}{DocFreq_w})$$

where $DocFreq_W$ is the number of documents in which term W occurs and N is the total number of documents.

OSU MEDLINE IDF Weights

Tuning parameter thresholds other factors will produce variation in the results

```
0.189135 human
0.288966 and
0.300320 the
0.542811 with
0.737224 for
0.793466 was
0.867298 were
12.590849 actinomycetoma
12.590849 actinomycetomata
12.590849 actinomycoma
12.590849 actinomyosine
12.590849 actinoplane
12.590849 actinopterygii
12.590849 actinoxanthin
12.590849 actisomide
12.590849 activ
12.590849 activationin
```

Discrimination Coefficient Weights

The Discrimination coefficient measures the degree to which a term differentiates one document from another.

It is calculated based on the effect a term has on overall hyperspace density with and without a given term.

If the space density is greater when a term is removed from consideration, that means the term was making documents look less like one another (a good discriminator) while terms whose removal decreases the density are poor discriminators.

The discrimination values for a set of terms are similar to the values for the IDF weights but not exactly.

Calculating Discrimination Coefficients

The basic procedure calls for calculating the average of the pair-wise similarities between all documents in the space.

Then, for each term, the average of the pair-wise similarities of all the documents is calculated without that term.

The difference in the averages is the term discrimination value for the term.

When the average similarity increases when a word is removed, the word was a good discriminator - it made documents look less like one another.

On the other hand, if the average similarity decreased, the term was not a good discriminator since it made the documents look more like one another.

In practice, this is an expensive weight to calculate unless speed-up techniques are used.

Discrimination Coefficients

see:

http://www.cs.uni.edu/~okane/source/ISR/willett85.pdf

http://www.cs.uni.edu/~okane/source/ISR/crouch88.pdf

http://www.cs.uni.edu/~okane/source/ISR/salton83.pdf

Calculating Discrimination Coefficient with a Centroid Vector

$$\operatorname{Sim}_{3}(\operatorname{Doc}_{i},\operatorname{Doc}_{j}) = \frac{\sum_{k=1}^{t} (\operatorname{Term}_{ik} \cdot \operatorname{Term}_{jk})}{\sqrt{\sum_{k=1}^{t} (\operatorname{Term}_{ik})^{2} \cdot \sum_{k=1}^{t} (\operatorname{Term}_{jk})^{2}}}$$

$$\operatorname{Sim}_{3}(C, Doc_{j}) = \frac{\sum_{k=1}^{t} (C_{k} \cdot \operatorname{Term}_{jk})}{\sqrt{\sum_{k=1}^{t} (C_{k})^{2} \cdot \sum_{k=1}^{t} (\operatorname{Term}_{jk})^{2}}}$$

Average Similarity Using Centroid Vector

$$AveSim = \frac{1}{N} \sum_{j=1}^{N} \frac{\sum_{k=1}^{t} (C_k \cdot Term_{jk})}{\sqrt{\sum_{k=1}^{t} (C_k)^2 \cdot \sum_{k=1}^{t} (Term_{jk})^2}}$$

OSUMED Low Weights

idf word	^dict	^df	^idf	^mca
4.01 constant	122	91	4.01	-606
4.01 operative	130	91	4.01	-698
4.01 respiratory	163	91	4.01	-1226
4.01 rest	169	91	4.01	-1244
4.02 basi	107	90	4.02	-535
4.02 evaluate	99	90	4.02	-520
4.02 fluid	192	90	4.02	-1761
4.02 undergo	132	90	4.02	-811
4.03 rang	120	89	4.03	-673
4.03 research	133	89	4.03	-1255
4.03 wall	208	89	4.03	-2018
4.03 young	128	89	4.03	-919
4.04 account	109	88	4.04	-586
4.04 disorder	148	88	4.04	-1233
4.04 head	213	88	4.04	-2246
4.04 main	110	88	4.04	-542
4.04 performance	155	88	4.04	-1041

OSUMED High Weights

idf word	^dict	^df	^idf	^mca
8.52 uninvolve	7	1	8.52	80
8.52 unna	5	1	8.52	41
8.52 ureteroureterostomy	7	1	8.52	145
8.52 urobilinogen	5	1	8.52	53
8.52 valverelate	7	1	8.52	97
8.52 vegetation	5	1	8.52	56
8.52 venomspecific	5	1	8.52	96
8.52 venoocclusive	5	1	8.52	174
8.52 ver	6	1	8.52	79
8.52 vermicular	6	1	8.52	132
8.52 vial	11	1	8.52	68
8.52 wax	5	1	8.52	41
8.52 woodchuck	8	1	8.52	202

Thesaurus & Phrase Construction

It is possible to find connections between terms based on their frequency of cooccurrence. Terms that co-occur frequently together are likely to be related and can indicate that the words may be synonyms or terms used to express a similar concept.

Thesaurus & Phrase Construction

For example, a strong relationship such as between the words artificial and intelligence in a computer science data base is due to the phrase artificial intelligence which names a branch of computing. In this case, the relationship is not that of a synonym. Similarly, in the medical data base terms such as circadian rhythm and vena cava and herpes simplex are concepts expressed as more than one term.

On the other hand words like synergism and synergistic, cyst and cystic, schizophrenia and schizophrenic, nasal and nose, and laryngeal and larynx are examples of synonym relationships.

In other cases, the relationship is not so tight so as to be a full synonym but express a categorical relationship such as anesthetic and halothane, analgesia and morphine, nitrogen and urea, and nurse and personnel

Thesaurus & Phrase Construction

Regardless of the relationship, a thesaurus table can be constructed giving a list of related terms. With this information it is then possible to:

- augment queries with related words to improve recall;
- combine multiple related infrequently occurring terms into broader, more frequently occurring categories terms; and,
- create middle frequency composite terms from otherwise unusable high frequency component terms.

First, we construct a square term-term correlation matrix which gives the frequency of cooccurrence of terms with one another.

Thus, if some term A occurs in 20 documents and if term B also occurs in these same documents, the term-term correlation matrix cell for row A and column B will have a value of 20.

A term-term correlation matrix's lower diagonal matrix is the same as the upper diagonal matrix since the relationship between term A and B is always the same as the relationship between term B and A.

The diagonal itself is the count of the number of documents in which the term occurs.

Calculating a complete term-term correlation matrix based on all documents in a large collection can be very time consuming.

In most cases, a term-term matrix potentially contains many billions of elements (the square of the number of vocabulary terms) summed over the entire collection of documents.

In practice, however, it is only necessary to sample part of the total collection.

That is, you can calculate a representative matrix by looking at every fifth, tenth or twentieth document, *etc.*, depending on the total size of the collection.

The term-term co-occurrence matrix, also known as the term connection matrix, is an $N \times N$ square matrix, where N is the number of terms in the vocabulary, whose elements give the number of documents associated with each pair of terms. More formerly, it is:

$$TermTerm = DocTerm^{T} \cdot DocTerm$$

That is, the product of the document term matrix *DocTerm* with its transpose.

In the *TermTerm* matrix, the rows and columns are term identifiers and the cells addressed are the number of documents which contained both terms. Here the elements of *DocTerm* are binary: a 0 indicates the term is not present and a 1 indicates the term is present.

Alternatively, in terms of the *DocTerm* matrix with elements d_{ij} , for document i and term j, the elements t_{ik} for terms j and k of the *TermTerm* matrix can be calculated as:

$$tt_{jk} = d_{1j}d_{1k} + d_{2j}d_{2k} + d_{3j}d_{3k} \dots d_{Nj}d_{Nk}$$

In other words, the similarity between term i and term j is the sum of the number of times they co-occur in a documents.

For example, is you have 3 three documents entitled:

 Doc_1 = Pseudomonas-aeruginosa cystic-fibrosis.

Doc₂ = Pseudomonas-aeruginosa immune response

 Doc_3 = Immune complexes in cystic-fibrosis

Then the document term matrix *DocTerm* and its transpose *DocTerm^T* for the terms (column headings) *pseudomonas-aeruginosa, immune, cystic-fibrosis, response,* and *complexes* will be ---

$$DocTerm = \begin{pmatrix} 10100 \\ 11010 \\ 01101 \end{pmatrix}$$

$$DocTerm^{T} = \begin{pmatrix} 110 \\ 011 \\ 101 \\ 010 \\ 001 \end{pmatrix}$$

$$Doc_{1} \text{ Pseudomonas-aeruginosa cystic-fibrosis}$$

Doc₁ Pseudomonas-aeruginosa cystic-fibrosis

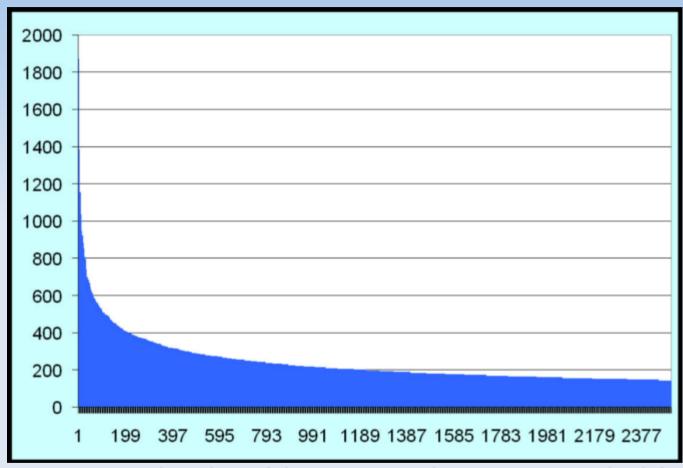
Doc2 Pseudomonas-aeruginosa immune response

Doc3 Immune complexes in cystic-fibrosis

$$TermTerm = DocTerm^{T} \cdot DocTerm =$$

pseudomona	immune	cystic-fibrosi:	response	complexes
2 1 1 1 0	2 1 2 1 (1 1 1 2 2 (0 1 1 (1 (1 1 1 1 (1 (1 (

pseudomonas immune cystic-fibrosis response complexes



Frequency of co-occurrence (number of times two words co-occur together) for the entire OSU collection is plotted against rank. The vertical axis represents the number of times two terms co-occur and the horizontal axis gives the rank of the term pair when sorted by this frequency of co-occurrence. That is, the term pair that co-occur the most frequently (a bit less than 1200 times) appears first (leftmost), the term pair co-occurring next most frequently next, and so on.

Term-Term Similarity Matrix

Salton (Salton 1983) proposes the formula below where t(i,k) is the frequency of occurrence of term k in document i and t(i,h) is the frequency of occurrence of term h in document i. The numerator is the sum of the co-occurrences of terms i and i and the denominator is the sum of the squares of the independent frequency of occurrences of the terms separately minus the frequency of co-occurrence.

Basically, if two terms never co-occur the result will be zero and if they co-occur always, the result will be one.

Unlike the raw term-term co-occurrence count, this method takes into account underlying word usage frequency. The basic term-term co-occurrence count shown above is biased in that it favors higher frequency terms. Some lower frequency terms may have usage profiles with one another that indicate a greater similarity. n

$$similarity (Term_{k}, Term_{h}) = \frac{\sum_{i=1}^{n} t_{ik} t_{ih}}{\sum_{i=1}^{n} (t_{ik})^{2} + \sum_{i=1}^{n} (t_{ih})^{2} - \sum_{i=1}^{n} t_{ik} t_{ih}}$$

OSUMED Term-Term matrix

```
0.006 15 erythematosus lupu
                                      0.010 33 erratum publish
0.006 6 endocardit infective
                                      0.010 6 corneum stratum
0.006 6 visualization visualize
                                      0.011 10 nitr oxide
0.006 7 abstract annu
                                      0.011 11 carbon dioxide
0.006 7 hypothermic normothermic
                                      0.012 6 pneumoniae streptococcus
0.007 6 autosomal inheritance
                                       0.012 8 antiinflammatory nonsteroid
0.007 6 carbon monoxide
                                       0.014 6 arteriosus ductus
0.007 9 dismutase superoxide
                                      0.015 6 herniate herniation
0.007 9 dodecyl gel
                                       0.016 6 chorionic gonadotropin
0.008 10 erratum med
                                      0.016 8 anorexia nervosa
0.008 13 electrophoresis gel
                                      0.018 7 herpe simplex
                                       0.018 9 dodecyl electrophoresis
0.008 17 aureus staphylococcus
0.008 9 abstract meet
                                       0.019 7 catalase dismutase
0.008 9 annu meet
                                       0.024 6 endoplasmic reticulum
0.008 9 autosomal recessive
                                      0.033 7 aeruginosa pseudomona
                                      0.034 6 coli escherichia
0.009 6 camera gamma
0.009 6 dysphagia swallow
                                       0.034 6 enzymelink immunosorbent
```

0.009 6 multivariate univariate

Position Specific Term-Term Matrix

Another modification to improve term-term detection involves retaining during document scanning the relative positions of the words with respect to one another in the collection. Then, when calculating the term-term matrix, proximity can be taken into account.

In DocTerm.mps a third level index was stored which is, for each distinct word in the document, a set of numbers indicating the distance of the word from the start of the document:

Where k is the position of the word in the document (1,2,3...). With this information, it becomes possible to attenuate the strength of co-occurrences by the proximity of the co-occurrence.

Proximity Related Terms

1721	infarct myocardial	-465
1445	dens lipoprotein	73
1184	abstract word	1184
1128	magnetic resonance	376
1095	cord spin	-309
1057	lymph node	313
964	arthrit rheumatoid	-307
936	female male	-43
878	cholesterol lipoprotein	43
872	blind double	-304
859	compute tomography	255
811	imag resonance	-189
762	carry out	262
742	determine whether	321
733	cholesterol dens	-137
686	mitr valve	114
660	state unit	-240
649	centre nerv	221
639	amino sequence	- 7
638	aortic valve	194
633	guinea pig	32
629	care health	-97
625	imag magnetic	-439
610	cystic fibrosis	179
587	head neck	149
566	death sudden	-191

Term Clustering

Terms can be grouped into clusters using the results of the term-term matrix.

In a single link clustering system, a term is added to a cluster if it is related to one term already in the cluster.

Term Clustering

- 1. Sort the term-term correlations by strength of correlation with the most strongly correlated first.
- 2. Read each pair of words and their strength of correlation from step 1.
- 3. Search the clusters. If one of the words is in a cluster, add the other word to the cluster.
- 4. If neither word of a pair is in a cluster, create a new cluster containing the word pair.

Term Clusters

27 cluster acquire aids antibiotic deficiency immune immunodeficiency infection viral viru

28 cluster chemotherapy cisplatin metastase metastatic node

29 cluster abdominal bowel gland hormone intestinal peptide pituitary regulate secretion testosterone thyroid

3 cluster accurate compute electron image light microscopic microscopy scanne ultrastructure

30 cluster diabetic mellitus

31 cluster cholesterol lipid lipoprotein triglyceride

Term Phrases

As we have seen, recall can be improved if additional, related terms are added to a query. Thus, a query for *antenna* will result in more hits in the data base if the related term *aerial* is added. An increase in recall, however, is often accompanied by a decrease in precision.

Identification of phrases, however, has the potential to increase precision.

These are composite terms of high specificity - such as *television aerial* noted above. While both *television* and *aerial* individually are broad terms, the phrase *television aerial* or *television antenna* is quite specific.

When a phrase is identified, it should become a single term in the document vector.

Term Phrases

Phrases can be identified by both syntactic and statistical methods. While techniques may take into account term proximity as well as co-occurrence such as suggested above, Salton suggests the following simpler formula for construction of term phrases:

```
^Cohesion(i,j) = SIZE_FACTOR * (^tt(i,j)/(^dict(i)*^dict(j)))
```

That is, the cohesion between term *i* and term *j* can be calculated from the frequency of co-occurrence between the terms divided by the product of their total frequencies of occurrence.

Term Phrases

Salton notes that this procedure can sometimes result in unwanted connections such as *Venetian blind* and *blind Venetian*.

For that reason, the aggregate relative order of the terms, as shown above, can help to decide when two terms are seriously linked.

That is, if the order is strongly in favor of on term preceding another, this indicates a probable phrase; on the other hand, if the relative order is in neither direction, this is probably not a phrase.

Cohesion Results

3030 erratum med	720	echocardiographic twodimension
2455 carbon dioxide		adenylate cyclase
2164 nitr oxide		allergic dermatit
2040 med publish		cava vena
2040 erratum publish		boys girl
1954 electrophoresis gel		angioplasty transluminal
1661 aureus staphylococcus		localization localize
1372 diabete mellitus		acquire immunodeficiency
1282 erythematosus lupu		doppler puls
1269 polymorphism restriction		america society
1067 messenger rna		magnetic resonance
1025 academy america		clas york
986 expiratory forc		•
925 leukocyte polymorphonuclear		echocardiographic echocardiography
885 colit ulcerative		messenger mrna
799 peptic ulcer		compute tomographic
779 angina pector		lipoprotein triglyceride
724 doubleblind placebo		guinea pig
724 GOUDIEDITHG PIGCEDO	489	anesthesia anesthetic

Document-Document matrix

It is also possible to construct Document-Document Matrices giving the correlation between all documents which have significant similarities with one another.

Such a matrix can be used to generate document clusters.

It can also be used for purposes of document browsing by permitting the user to navigate related documents to the one being viewed.

That is, if a user finds on of the retrieved articles of particular interest, a Document-Document matrix can be used to quickly identify other documents related to a document of interest.

The program shown next only calculates the cosines between documents that share *at least* one term rather than between all possible documents.

Document-Document Matrix

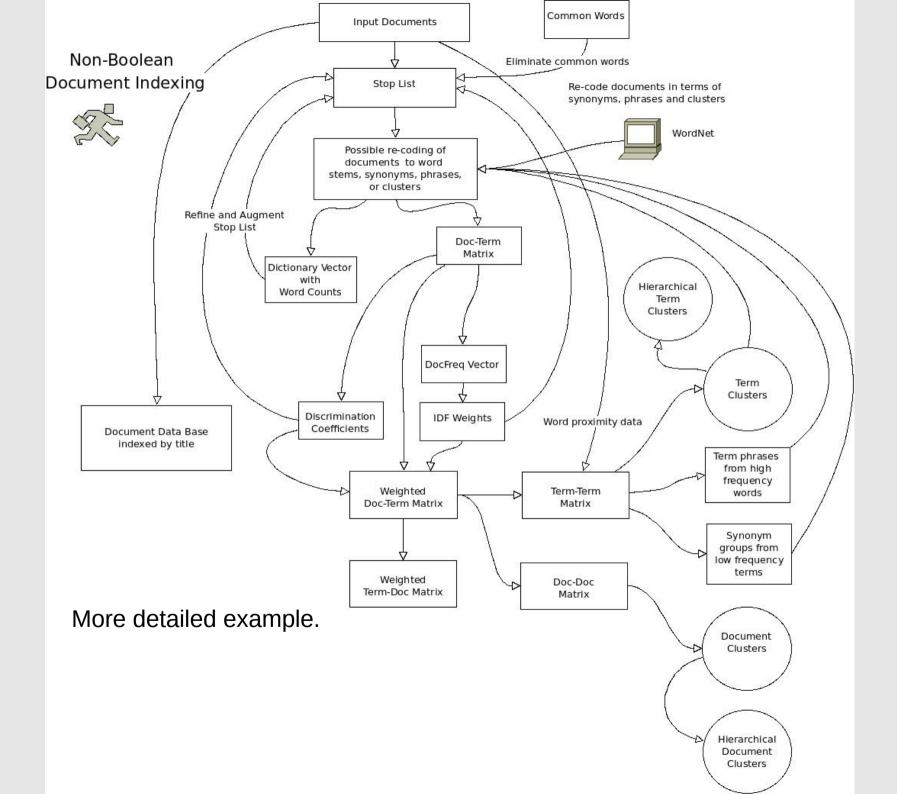
```
1:
          244(0.017) 3298(0.010) 3499(0.020) 3510(0.023) 4013(0.089) 4338(0.028) 580(0.005)
100:
          3774(0.170) 4942(0.052)
1000:
          1897(0.064) 1946(0.056) 3919(0.301) 4014(0.079) 4015(0.173) 987(0.032) 993(0.059)
1001:
          1259(0.033) 2596(0.054) 4194(0.046) 504(0.060) 852(0.081) 999(0.113)
1002:
          1540(0.175) 217(0.021) 2245(0.175) 2484(0.208) 2795(0.046) 292(0.117) 3755(0.084)
1003:
          1539(0.185)
          1007(0.151) 1024(0.054) 1033(0.102) 1474(0.023) 208(0.013) 2940(0.039)
1004:
1005:
          1007(0.092) 2866(0.031) 3291(0.102) 3298(0.042) 3418(0.103) 3971(0.072)
          1007(0.166) 1897(0.091) 2444(0.011) 2661(0.058) 3206(0.029) 3285(0.039)
1006:
          1737(0.142) 1946(0.138) 2666(0.078) 2951(0.072) 3596(0.055) 4008(0.095)
1007:
1009:
          1540(0.228) 4794(0.297)
          1021(0.050) 2519(0.062) 324(0.158) 3411(0.260) 3546(0.023) 4698(0.060)
1018:
1019:
          1030(0.033) 1422(0.055) 1480(0.025) 1519(0.103) 1526(0.034) 2186(0.076)
(long lines truncated)
```

Document Clustering

We can calculate document clusters from the document-document matrix in a manner similar to that used for term clusters.

Document Clusters

```
cluster 12
1654
      Energy requirements of pregnancy in Scotland.
      Energy requirements of pregnancy in The Netherlands.
4475
4582
      Energy requirements of pregnancy in the Philippines.
cluster 14
      Papers presented at the annual meeting of the Section of Urology, American Academy of
1407
      Abstracts of free communications: the thirty-fourth annual meeting of the American
1713
2373
      Abstracts. American Academy of Pediatrics, Section on Cardiology, 29th annual meeting, New
cluster 15
3343
      Proceedings of the British Institute of Radiology. Practical aspects of magnetic resonance
3344
      Uroradiology update. Meeting held jointly by the British Institute of Radiology, the Royal
cluster 16
1180
      Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function.
      Metaiodobenzylquanidine to map scintigraphically the adrenergic nervous system in man.
1181
cluster 17
1408
      A nonsurgical approach to the management of primary vesicoureteral reflux.
      Endoscopic treatment of vesicoureteral reflux in children.
1410
1411
       The endoscopic correction of reflux by polytetrafluoroethylene injection.
cluster 18
      Abstracts from the 60th scientific sessions. American Heart Association. Anaheim, November
270
      Cardiovascular surgery 1986. Council on Cardiovascular Surgery, American Heart Association.
3533
608
       40th annual scientific meeting of the Gerontological Society of America. November 18-
(long lines truncated)
```



Retrieval

```
---> medlineRetrieve.mps staphyloccus aureus antibiotics
query term: staphylococcus
  Words in this stem group are: staphylococcus
  adding related phrase words: antibiotic-staphylococcus organism-staphylococcus
                         peritonitis-staphylococcus staphylococcus-aureus
                         staphylococcus-endocarditis staphylococcus-epidermidis
                         staphylococcus-infections staphylococcus-methicillin-
                         resistant
                         staphylococcus-strain
  words that may sound similar to staphylococcus: staphylococcal
                         staphylococci
query term: aureus
  Words in this stem group are: aureus
  adding related phrase words: aureus-endocarditis aureus-glycocalyx
                         aureus-infections aureus-osteomyelitis
                         aureus-resistant aureus-strain coagulase-aureus
                         organism-aureus peritonitis-aureus
                         s-aureus staphylococcus-aureus tibiae-aureus
                         vivo-aureus
  words that may sound similar to aureus: none
```

Retrieval

Words in this stem group are: antibiotic antibiotics adding related phrase words: aminoglycoside-antibiotic antibiotic-bacteremia antibiotic-bacterial antibiotic-beta-lactam antibiotic-burnetii antibiotic-catheter antibiotic-giardiasis antibiotic-organism antibiotic-parenteral antibiotic-solution antibiotic-staphylococcus antibiotic-valve appropriate-antibiotic assay-antibiotic cartilage-antibiotic cefonicid-antibiotic cephalosporin-antibiotic cost-antibiotic drainage-antibiotic efficacies-antibiotic endocarditis-antibiotic fever-antibiotic infections-antibiotic penetration-antibiotic preoperative-antibiotic prolonged-antibiotic prophylactic-antibiotic prophylaxis-antibiotic susceptibility-antibiotic vancomycin-antibiotic wound-antibiotic

antibacterials antibiotic-impregnated antibody-deficiency antibody-dependent

antibody-quided antibody-positive

words that may sound similar to antibiotics: antibacterial

46 documents found.

query term: antibiotics

Retrieval

```
Title
 Doc Rel
5676 0.268 Single and combination-antibiotic therapy for experimental endocarditis caused by methicillin-
          matched keys: aureus staphylococcus *staphylococcus-aureus
                       *staphylococcus-methicillin-resistant
7048 0.267 Evolution of the hyperimmunoglobulin E and recurrent infection HIE JOB's syndrome in a youn
          matched keys: aureus *s-aureus staphylococcus *staphylococcus-aureus
5084 0.213 Antibiotic treatment of Staphylococcus aureus endocarditis A review of
                                                                                    cases
          matched keys: *aminoglycoside-antibiotic *antibiotic-beta-lactam
                       *antibiotic-staphylococcus aureus *aureus-strain
                       staphylococcus *staphylococcus-aureus
                       *staphylococcus-strain
6949 0.202 Comparison of culture media for detecting methicillin resistance in Staphylococcus aureus and
           matched keys: aureus *aureus-resistant *aureus-strain
                       *coaqulase-aureus *s-aureus staphylococcus *staphylococcus-aureus
                       *staphylococcus-strain
7145 0.200 In vivo glycocalyx expression by Staphylococcus aureus phage type A in S aureus osteomyeliti
           matched keys: aureus *aureus-glycocalyx *organism-aureus
                       *organism-staphylococcus *s-aureus
                       staphylococcus *staphylococcus-aureus
                       *tibiae-aureus *vivo-aureus
7146 0.199 Expression of capsular polysaccharide during experimental focal infection with Staphylococcus
          matched keys: aureus *aureus-strain staphylococcus *staphylococcus-aureus
                       *staphylococcus-strain *vivo-aureus
5272 0.184 Staphylococcus aureus septicemia mimicking fulminant Rocky Mountain spotted fever
          matched keys: aureus staphylococcus *staphylococcus-aureus
 880 0.150 Protein A and coagulase expression in epidemic and non-epidemic Staphylococcus aureus
          matched keys: aureus *aureus-resistant *aureus-strain
                       *coaqulase-aureus *s-aureus staphylococcus *staphylococcus-aureus
                       *staphylococcus-strain
```

*Time used: 0 seconds

SQL?

The workbench generates a SQL create table and insert commands that can be used to build a relational database of the documents. Given the relational model, is this efficient?

Create Database

```
create table docs (doc int, title varchar(255))
create table docVect (doc int, word varchar(100), wgt float);
create table terms (word varchar(100), TotCount int, DocCount int);
create table dd (doc1 int, doc2 int, wgt float);
create table tt (term1 varchar(100), term2 varchar(100), wgt float);
psql -d isr < SQL.commands</pre>
```

```
select doc, word, round(cast(wgt as numeric),2)
   from docVect
      where word='mole'
      order by wgt desc
      limit 10;
doc
       word
              round
5375 | mole | 34.90
4231
      mole
             20.94
4235
      mole
             13.96
4233
     | mole |
             6.98
4236
              6.98
      mole
 242
             6.98
      mole
 857 | mole | 6.98
2628
              6.98
      mole
4230
       mole
               6.98
(9 rows)
```

doc	loc substring		word			
	·	+				
5297	Analysis of continuous ambulatory perito	42.30	infection			
2178	Comparison of nosocomial infections due	38.07	infection			
2461	A five-year study of the microbiologic r	33.84	infection			
4467	Inhibition of theophylline metabolism by	31.45	interferon			
5763	Infection prophylaxis in pulmonary surge	29.61	infection			
5641	Side effects and toxicity of interferon	25.16	interferon			
5261	Treatment of idiopathic mixed cryoglobul	25.16	interferon			
879	Infections in British clinical laborator	21.15	infection			
7134	Disseminated Kaposis sarcoma in AIDS hi	18.87	interferon			
7111	Epitopes of human interferon-alpha defin	18.87	interferon			
(10 rov	(10 rows)					

doc	substring	round		
5297	Analysis of continuous ambulatory perito	42.30		
2178	Comparison of nosocomial infections due	38.07		
4467	Inhibition of theophylline metabolism by	35.68		
2461	A five-year study of the microbiologic r	33.84		
5763	Infection prophylaxis in pulmonary surge	29.61		
9824	Depression of murine hepatic mixed funct	26.75		
5261	Treatment of idiopathic mixed cryoglobul	25.16		
5641	Side effects and toxicity of interferon	25.16		
879	Infections in British clinical laborator	21.15		
7134	Disseminated Kaposis sarcoma in AIDS hi	18.87		
(10 rows)				

doc1	title1	rslt	doc2	title2
	+		+ -	
2178	Comparison of nosocomial infec	38.07	6551	A clinical pharmacy-oriented d
2178	Comparison of nosocomial infec	38.07	5203	Endemic multiply resistant St
2178	Comparison of nosocomial infec	38.07	5496	Management of soft-tissue infe
2178	Comparison of nosocomial infec	38.07	5763	Infection prophylaxis in pulmo
2178	Comparison of nosocomial infec	38.07	3863	In vivo comparison of two silv
2178	Comparison of nosocomial infec	38.07	9138	Efficacy of cefazolin cefaman
2178	Comparison of nosocomial infec	38.07	292	Delayed postbacteremic prosthe
2461	A five-year study of the micro	33.84	4575	Outcome in patients on continu
2461	A five-year study of the micro	33.84	4426	Serum magnesium level and arte
2461	A five-year study of the micro	33.84	3564	Serum myoglobin in patients on
(10 rows)				

select term1, term2, wgt from tt
 where term1 = 'anesthetize'
 order by wgt desc limit 10;

term1	term2	wgt
anesthetize anesthetize anesthetize anesthetize anesthetize anesthetize anesthetize anesthetize anesthetize	dogs cats pentobarbital open-chest ventilate halothane min hemodynamic ventile	0.194 0.109 0.101 0.092 0.078 0.076 0.067 0.062
<pre>anesthetize (10 rows)</pre>	output	0.058

doc word		title1		
1019	 min	Partial aortic ligation a hypoperfusion		
1019				
1020	dogs	Role for intrarenal adenosine in the ren		
1020	hemodynamic	Role for intrarenal adenosine in the ren		
1020	min	Role for intrarenal adenosine in the ren		
1027	min	Flow dependence of vasopressin-stimulate		
11	halothane	Potentiation of the neuromuscular blocka		
1111	1111 min Changes in cerebral blood flow during an			
112	output	Pumping device for re-infusion excretion		
1143	dogs	Pharmacokinetics and toxicity of intrape		
1161	1161 cats The effect of craniectomy on the biomech			
(10 rows)				

Precision & Recall

Two important metrics of information storage and retrieval system performance are precision and recall.

Precision measures the degree to which the documents retrieved are relevant to the query.

Recall measures the degree to which the system can retrieve all relevant documents.

$$Precision = \frac{\{relevant\ documents\} \cap \{retrieved\ documents\}}{retrieved\ documents}$$

$$Recall = \frac{\{relevant\ documents\} \cap \{retrieved\ documents\}}{relavant\ documents}$$

Precision & recall

For example, if a system responds to a query by retrieving 10 documents from the collection and of these, 8 are relevant and 2 are irrelevant and if the collection actually has 16 relevant documents, we say that the recall is 50% and the precision is 80%.

That is, only 50% of the relevant documents were recalled but of those presented, 80% were correct.

Precision & recall

In general, as recall increases, precision declines.

For example, if by setting thresholds lower the system responds with 20 documents instead of 10 and if 12 of these are relevant but 8 are not, the recall has increased to 75% but the precision has fallen to 60%.

In most systems, as you lower thresholds and more documents are retrieved, the recall will rise but the precision will decline.

In an ideal system, however, as thresholds are lowered, recall increases but precision remains 100%.

Precision and Recall example

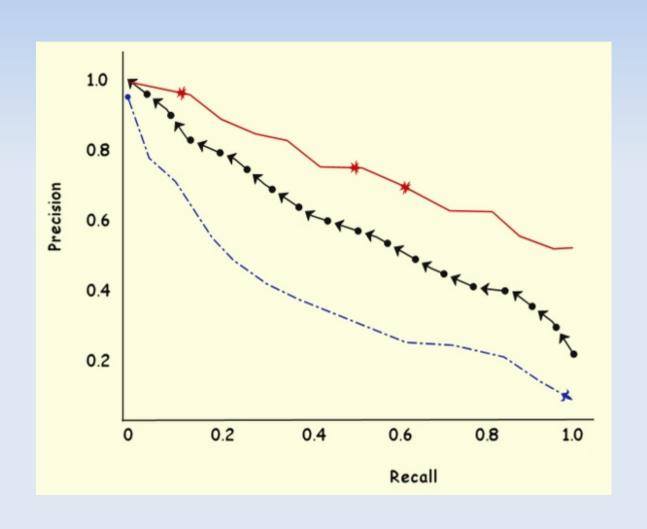
Rank	Relevant?	Recall	Precision
1	VOS	0.1	1.0
	yes	U.I	1.0
2	yes	0.2	1.0
3	no	0.2	0.67
4	yes	0.3	0.75
5	yes	0.4	0.80
6	no	0.4	0.67
7	no	0.4	0.57
8	yes	0.5	0.63
9	no	0.5	0.56
10	yes	0.6	0.60

Comparing systems

Salton [1971] used precision-recall graphs similar to the one shown next in order to compare the results of different retrieval experiments.

Those experiments which resulted in a slower drop in precision as recall increased represent improvement in system response.

Precision-recall graphs



Effect of term frequency on precision and recall

Indexing vocabulary effects on precision & recall results.

Generally speaking, terms of *low frequency* tend to increase the precision of a system's responses at the expense of recall as these tend to reference more narrowly defined concepts.

On the other hand, terms of *high frequency* tend to increase recall at the expense of precision as these are often more broadly defined.

Identifying those terms which strike a balance is a major goal of any system.

Other influences on precision and recall

- High frequency terms tend to decrease precision and increase recall
- Low frequency term tend to increase precision and decrease recall
- Adding synonyms decreases precision and increases recall
- Use of term phrases during indexing can increase precision and decrease recall

Effect on recall of added terms

Recall can be improved if additional, related terms are added to a query.

Thus, a query for antenna will result in more hits in the data base if the related term aerial is added.

An increase in recall, however, is often accompanied by a decrease in precision. As is evidenced by the fact that while aerial is a commonly used synonym for antenna, as in television aerial, it can also refer to a dance move, a martial arts move, skiing, various musical groups and performances, and any activity that is done at a height (*e.g.*, aerial photography). Thus, adding it to a query with antenna has the potential to introduce many extraneous hits.